A method for computing association rate constants of atomistically represented proteins under macromolecular crowding.
نویسندگان
چکیده
In cellular environments, two protein molecules on their way to form a specific complex encounter many bystander macromolecules. The latter molecules, or crowders, affect both the energetics of the interaction between the test molecules and the dynamics of their relative motion. In earlier work (Zhou and Szabo 1991 J. Chem. Phys. 95 5948-52), it has been shown that, in modeling the association kinetics of the test molecules, the presence of crowders can be accounted for by their energetic and dynamic effects. The recent development of the transient-complex theory for protein association in dilute solutions makes it possible to easily incorporate the energetic and dynamic effects of crowders. The transient complex refers to a late on-pathway intermediate, in which the two protein molecules have near-native relative separation and orientation, but have yet to form the many short-range specific interactions of the native complex. The transient-complex theory predicts the association rate constant as k(a) = k(a0)exp(-ΔG*(el)/k(B)T), where k(a0) is the 'basal' rate constant for reaching the transient complex by unbiased diffusion, and the Boltzmann factors captures the influence of long-range electrostatic interactions between the protein molecules. Crowders slow down the diffusion, therefore reducing the basal rate constant (to k(ac0)), and induce an effective interaction energy ΔG(c). We show that the latter interaction energy for atomistic proteins in the presence of spherical crowders is 'long'-ranged, allowing the association rate constant under crowding to be computed as k(ac) = k(ac0)exp[-(ΔG*(el) + ΔG*(c))/k(B)T]. Applications demonstrate that this computational method allows for realistic modeling of protein association kinetics under crowding.
منابع مشابه
webSDA: a web server to simulate macromolecular diffusional association
Macromolecular interactions play a crucial role in biological systems. Simulation of diffusional association (SDA) is a software for carrying out Brownian dynamics simulations that can be used to study the interactions between two or more biological macromolecules. webSDA allows users to run Brownian dynamics simulations with SDA to study bimolecular association and encounter complex formation,...
متن کاملEffects of Macromolecular Crowding on the Conformational Ensembles of Disordered Proteins.
Due to their conformational malleability, intrinsically disordered proteins (IDPs) are particularly susceptible to influences of crowded cellular environments. Here we report a computational study of the effects of macromolecular crowding on the conformational ensemble of a coarse-grained IDP model, by using two approaches. In one, the IDP is simulated along with the crowders; in the other, cro...
متن کاملEffects of macromolecular crowding and DNA looping on gene regulation kinetics
DNA-binding proteins control how genomes function. The theory of facilitated diffusion1 explains how DNA-binding proteins can find targets apparently faster than the diffusion limit by using reduced dimensionality2,3—combining threedimensional (3D) diffusion through cytoplasm with 1D sliding along DNA (refs 3–15). However, it does not include a description of macromolecular crowding on DNA as o...
متن کاملFast Method for Computing Chemical Potentials and Liquid-Liquid Phase Equilibria of Macromolecular Solutions.
Chemical potential is a fundamental property for determining thermodynamic equilibria involving exchange of molecules, such as between two phases of molecular systems. Previously, we developed the fast Fourier transform (FFT)-based method for Modeling Atomistic Protein-crowder interactions (FMAP) to calculate excess chemical potentials according to the Widom insertion. Intermolecular interactio...
متن کاملThe Role of Crowded Physiological Environments in Prion and Prion-like Protein Aggregation
Prion diseases and prion-like protein misfolding diseases are related to the accumulation of abnormal aggregates of the normal host proteins including prion proteins and Tau protein. These proteins possess self-templating and transmissible characteristics. The crowded physiological environments where the aggregation of these amyloidogenic proteins takes place can be imitated in vitro by the add...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical biology
دوره 9 6 شماره
صفحات -
تاریخ انتشار 2012